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Abstract Unlike the conventional transient hot-wire method for measuring ther-
mal conductivity, the transient short-hot-wire method uses only one short thermal-
conductivity cell. Until now, this method has depended on numerical solutions of the
two-dimensional unsteady heat conduction equation to account for end effects. In order
to provide an alternative and to confirm the validity of the numerical solutions, a two-
dimensional analytical solution for unsteady-state heat conduction is derived using
Laplace and finite Fourier transforms. An isothermal boundary condition is assumed
for the end of the cell, where the hot wire connects to the supporting leads. The
radial temperature gradient in the wire is neglected. A high-resolution finite-volume
numerical solution is found to be in excellent agreement with the present analytical
solution.
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bn Constant specified after Eq. 11
i Square root of −1
I0 0 th-Order modified Bessel function of the first kind
I1 1st-Order modified Bessel function of the first kind
J0 0 th-Order Bessel function of the first kind
J1 1st-Order Bessel function of the first kind
K0 0 th-Order modified Bessel function of the second kind
K1 1st-Order modified Bessel function of the second kind
L Half the length of the wire
mn nth Eigenvalue (Eq. 10)
q Heat supplied per unit time per unit length of wire
Q Heat supplied to wire per unit time per unit volume
r Radial coordinate
r0 Radius of wire
R Radius of hot-wire cell
s Laplace transform parameter
t Time
T Temperature rise in the sample from the initial condition
Tw Temperature rise in the wire from the initial condition
Y0 0 th-Order Bessel function of the second kind
Y1 1st-Order Bessel function of the second kind
z Axial coordinate

Greek
αn Root of Eq. 13
β Constant specified after Eq. 11
�′ Function given by Eq. 14
λ Thermal conductivity
λw Thermal conductivity of wire
�′ Function given by Eq. 18
φn Root of Eq. 17
θn Unsteady part of the solution for the nth eigenvalue
�n Steady part of the solution for the nth eigenvalue
ζn Function given by Eq. 16

1 Introduction

The transient short-hot-wire method for measuring thermal conductivity and thermal
diffusivity was developed in the late 1990s by Fujii et al. [1–3]. It is a variant of the con-
ventional transient hot-wire method with the novelty that only one short conductivity
cell is used and end effects are accounted for by numerical simulation of unsteady heat
conduction in the cell. The method is particularly useful for corrosive or electrically
conductive fluids, where it is necessary to apply protective coatings to the wire [3].
For such applications, short wire reduces the probability of failure of the insulation.
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Another important potential application is the study of high-pressure gas thermal
conductivity [4], where a small-volume pressure vessel is highly desirable, particu-
larly from the point of view of ease of conformity with high-pressure gas regulations.

Recently the transient short-hot-wire method was extended by the present authors
[5] to make it applicable to low-density gases and conditions, where the temperature
rise is no longer a linear function of the logarithm of time. An algorithm was developed
based on the Gauss–Newton nonlinear least-squares method to simultaneously deter-
mine thermal conductivity and thermal diffusivity. However, an underlying concern
with any property measurement technique that makes use of numerical solutions is
that it is necessary to guarantee that numerical errors have been reduced to at least an
order of magnitude smaller than the experimental error. If this is not possible, then the
numerical error must be included in the uncertainty estimation for the fluid property.
Woodfield et al. [5] demonstrated numerical grid convergence and made estimates of
the numerical error using progressively finer grid spacing. This is an important test,
but to obtain an absolute estimate of the numerical error, it is desirable to compare
numerical solutions with exact analytical solutions.

Assael et al. [6] compared their one-dimensional finite element solution for the
transient hot-wire method with the well-known asymptotic one-dimensional analyti-
cal solution applicable for large time in an infinite medium. Fujii et al. [1] also made
use of the one-dimensional analytical solution to estimate the absolute numerical error
in their method based on the limiting case of a long wire. While the one-dimensional
asymptotic case is a useful test, it would be much better if two-dimensional analytical
solutions were available to check the accuracy at conditions, where end effects are
important. This is especially true for the short-hot-wire method since the instrument
usually operates at conditions, where the effect of the finite length is large. Thus,
the primary purpose of the present article is to provide a two-dimensional analytical
solution for validation of numerical solutions used in the short-hot-wire method. If the
hot-wire cell is designed such that the boundary conditions for the present analytical
solution are valid, then it is recommended that the analytical solution be used directly
in place of the numerical solution.

In 1976, Healy et al. [7] observed concerning the finite length of the wire that at
that time it was “not possible to account for such end effects analytically” (p. 394).
For this reason, experimental approaches, such as that using two wires of differing
lengths are usually applied to compensate for end effects [8]. However, a few years
prior to the publication of Ref. [7] a solution to the two-dimensional problem had
already been derived analytically by Kierkus et al. [9] assuming isothermal boundaries
at the ends and an infinite boundary in the radial direction. Moreover, for isothermal
boundaries, the two-dimensional steady-state case was solved as early as the 1930s
by Kannuluik and Martin [10,11] to correct for end effects in a steady-state hot-wire
cell. In a sense the above mentioned statement from Healy et al. [7] is still correct
since analytically, a complete treatment of the end effects may be extremely difficult,
if not impossible, due to the complicated geometry of the wire supports. However,
for some cases the end effects may be well approximated by an isothermal boundary
[1,2]. The reason for this is that it takes time for the heating effect from the wire to
extend beyond a local region surrounding the attachment point of the hot wire to its
support which itself has a large thermal inertia. For high thermal-diffusivity fluids
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(i.e., low-density gases) however, we must revert to numerical solutions for the tran-
sient short-hot-wire method since the effect of the support geometry starts to become
important [5].

The present article extends the work of Kierkus et al. [9] by deriving the solution for
the case of a finite-diameter cell. The technique itself for deriving the present solution
is not new, but we believe that solving this problem analytically is a useful contribu-
tion towards strengthening the foundation of the transient short-hot-wire method. The
approach used in the present study is an extension of that used for the one-dimensional
unsteady solutions by Carslaw and Jaeger for a finite hollow cylinder (Sect. 13.4 in
Ref. [12] and Refs. [13] and [14] for more general boundary conditions for the 1D
case).

2 Analytical Solution

2.1 Domain and Boundary Conditions

Figure 1 shows the domain and boundary conditions for the problem under consider-
ation. T denotes the rise in temperature from the initial condition, and the wire has a
length of 2L . For the wire, neglecting the radial temperature gradient (r ≤ r0),

1

aw

∂Tw

∂t
= ∂2Tw

∂z2 + Q

λw
+ 2λ

r0λw

∂T

∂r
|r=r0 (1)

Q = q/πr2
0 (1a)

The subscript w refers to the wire properties and temperatures, and no subscript refers
to the gas sample. The second term on the right-hand side of Eq. 1 represents Joule

T = 0 

T = 0 

0=
∂
∂

z

T

z = 0 

z = L

r = 0 r = r0 r = R

Pt wire
(constant 
volumetric 
heat source) 

sample 

container  
wall

Fig. 1 Domain and boundary conditions for analytical solution
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heating, which is assumed to be constant for t > 0, and the third term on the right-hand
side arises due to heat conduction into the sample. Note that neglecting the radial
temperature gradient in the wire greatly simplifies the analytical problem. The justifi-
cation for this assumption is discussed later in this article.

For the gas (r ≥ r0), unsteady heat conduction is given by

1

a

∂T

∂t
= 1

r

∂

∂r

(
r
∂T

∂r

)
+ ∂2T

∂z2 (2)

The boundary and initial conditions are given by

T |r=R = 0 (3)

T |z=0 = Tw|z=0 = 0 (4)

∂Tw

∂z
|z=L = ∂T

∂z
|z=L = 0 (5)

Tw = T |r=r0 (6)

T |t=0 = Tw|t=0 = 0 (7)

2.2 Analytical Solution Technique

Equations 1–7 were solved analytically using the Laplace and finite Fourier trans-
forms as follows: Laplace transform → finite Fourier transform → solve the one-
dimensional ordinary differential equation → inverse Laplace transform (residue
method) → inverse Fourier transform → final solution. Details of the derivation are
given in Appendix A.

2.3 Final Solution

The temperature rise at any time and point (t, r, z) in the sample is given by

T (r, z, t) =
√

2

L

∞∑
n=1

sin (mnz) (�n (r)+ θn (r, t)) r0 ≤ r ≤ R, 0 ≤ z ≤ L (8)

Integrating Eq. 8 from z = 0 to z = L , dividing by L , and setting r = r0 gives the
volume-averaged temperature rise in the wire as

Tw(av) (t) =
√

2

L3

∞∑
n=1

1

mn
(�n (r0)+ θn (r0, t)) (9)

Note that cos(mn L) = 0 for all mn . In Eq. 9, L is half the length of the wire and the
eigenvalues are given by
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mn = 2n − 1

L

π

2
(10)

The steady part of the solution is given as

�n (r) = bn (−K0 (mn R) I0 (mnr)

+ I0 (mn R) K0 (mnr)) /
(

I0 (mn R)
(

m2
n K0 (mnr0)+ βmn K1 (mnr0)

)

− K0 (mn R)
(

m2
n I0 (mnr0)− βmn I1 (mnr0)

))
(11)

The functions K0, I0, I1, and K1 are modified Bessel functions and β and bn are given
by

β = 2λ

r0λw
bn =

√
2

L

Q

mnλw

The transient part of the solution used in Eqs. 8 and 9 is given by

θn (r, t) = ζn (φn)

+
∞∑
j=1

bnπ

2

J0
(
α j,n R

)
Y0

(
α j,nr

) − Y0
(
α j,n R

)
J0

(
α j,nr

)
−a

(
α2

j,n + m2
n

)
�′ (α j,n

) e
−a

(
α2

j,n+m2
n

)
t

(12)

where J0 and Y0 are Bessel functions of the first and second kinds, respectively.
The constant, α j,n , is the j th positive real root of

J0 (αn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
Y0 (αnr0)+ βαnY1 (αnr0)

)

− Y0 (αn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
J0 (αnr0)+ βαn J1 (αnr0)

)
= 0 (13)

The function �′ in the denominator of Eq. 12 is given as

�′ (αn) = −π
4aαn

{−R J1 (αn R) [AnY0 (αnr0)+ βαnY1 (αnr0)]

+ J0 (αn R) [(βαnr0 − 2αn (a/aw)) Y0 (αnr0)− Anr0Y1 (αnr0)]

+ RY1 (αn R) [An J0 (αnr0)+ βαn J1 (αnr0)]

− Y0 (αn R) [(βαnr0 − 2αn (a/aw)) J0 (αnr0)− Anr0 J1 (αnr0)]}
(14)
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J1 and Y1 are first-order Bessel functions of the first and second kinds, respectively.
The parameter An is given by

An = −a
(
α2

n + m2
n

)
aw

+ m2
n

The first term on the right-hand side of Eq. 12, ζn(φ), appears if Eq. 13 has complex
roots. The complex roots only appear if the thermal diffusivity of the gas is larger than
the thermal diffusivity of the wire, and even then only at sufficiently large values of
m. If either of the conditions given in Eq. 15 are satisfied, ζn(φ) is zero. Proof of this
is given in Appendix B.

ζ (φ) = 0 when a ≤ aw or m2
n < β/{((a/aw)− 1) r0 ln (R/r0)} (15)

If both of the conditions in Eq. 15 are not satisfied, then ζn(φ) is given by

ζn (φn) = b

a
(
φ2

n−m2
n

)
�′ (φn)

(K0 (φn R) I0 (φnr)− I0 (φn R) K0 (φnr)) e−a
(
m2

n−φ2
n
)
t

when a > aw and m2
n > β/{((a/aw)− 1) r0 ln (R/r0)} (16)

φn is the positive real root of

(I0 (φn R) K0 (φnr0) − K0 (φn R) I0 (φnr0))
((
φ2

n − m2
n

)
(a/aw)+ m2

n

)
+ (I0 (φn R) K1 (φnr0)+ K0 (φn R) I1 (φnr0)) βφn = 0 (17)

The function in the denominator of Eq. 16, �′(φn), is given by

�′ (φn) = 1

2φna
[(K0 (φn R) I0 (φnr0)− I0 (φn R) K0 (φnr0)) (2 (a/aw)− βr0) φn

+ (r0 K0 (φn R) I1 (φnr0)− RK1 (φn R) I0 (φnr0)) Bn

+ (r0 I0 (φn R) K1 (φnr0)− RI1 (φn R) K0 (φnr0)) Bn

+ (K1 (φn R) I1 (φnr0)− I1 (φn R) K1 (φnr0)) βφn R] (18)

where

Bn = m2
n +

(
φ2

n − m2
n

)
a

aw

For ease of computation, note that for Eq. 17 the positive real root lies in the range
given by Eq. 19. This can be deduced from Eq. 17 as explained in Appendix B;

0 < φ2
n < m2

n (1 − (aw/a)) (19)

Notice that the transient term (Eq. 12) tends to zero for large t so that in the steady-state
only Eq. 11 is needed for evaluation of Eq. 8. Moreover, Eq. 12 will converge quickly
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if t is large, implying that fewer terms will be required as the solution approaches
the steady state. Unfortunately the modified Bessel functions required for Eqs. 11
and 16–18 do not usually come as standard with FORTRAN compilers so for the
present study the expansions given in Ref. [15] were used. Perhaps the most tedious
part of implementing the above analytical solution is finding the roots of Eq. 13.
This can be done in a computer program by observing that the roots are spaced at
a distance of approximately π/R apart. Once an approximate location of the root is
known, accurate evaluation can be done using a numerical search procedure such as
the Newton–Raphson method or the bisection method.

3 Comparison with Finite-Volume Numerical Solution

As mentioned above, the main purpose for deriving the present analytical solution is
an estimation of the absolute error in the numerical solution for the transient short-
hot-wire method. Therefore, as an example, we take the case of hydrogen gas at
atmospheric pressure and 25 ◦C as was also considered in Ref. [5]. The mathematical
model used in the finite-volume numerical solution is the same as that specified in
Eqs. 1– 7 except that the radial temperature gradient in the wire neglected in Eq. 1
was included in the numerical solution. Details of the problem geometry, conditions,
and assumed thermal properties are listed in Table 1. Full details of the numerical grid
and procedure for the finite-volume solution are also given in Ref. [5].

Figure 2 gives a comparison of the present analytical solution with the finite-vol-
ume numerical solution. The temperature rise is the volume-averaged temperature rise
in the wire as specified in Eq. 9. The agreement is excellent, and the two cases are
indistinguishable in the figure. Table 2 gives a comparison of specific points using two
different numerical grid arrangements.

We can see from Table 2 that the finer grid (Nr × Nz = 600 × 75) is closer to the
analytical solution than the 300×38 grid, as should be expected. The largest error is
at the smallest value of time (t = 0.02 s) but it is still less than 0.1 % (about 1 mK)
even for the 300 × 38 grid. Table 2 confirms that the high resolution numerical solu-
tion in Ref. [5] is reliable, and thus, is suitable for evaluation of thermal conductivity.
Moreover, the analytical solution given in Table 2 may be considered as bench-mark
quality data for testing of numerical codes developed for the transient short-hot-wire
method.

Table 1 Test problem specifications (hydrogen gas at atmospheric pressure, 25 ◦C)

q(W ·m−1) Gas Platinum wire r0 (µm) R(mm) L(mm)

a λ aw λw
(10−4m2· s−1) (W ·m−1·K−1) (10−5m2· s−1) (W ·m−1·K−1)

0.295 1.57 0.185 2.51 71.6 5 10 10
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Fig. 2 Comparison with numerical solution for volume-averaged wire temperature rise

Table 2 Comparison of analytical and numerical calculations for temperature rise

Time (s) Analytical T (K) Numerical 600 × 75 grid Numerical 300 × 38 grid

T (K) Error (%) T (K) Error (%)

0.02 1.51533 1.51515 0.012 1.51426 0.071
0.06 1.62706 1.62691 0.009 1.62607 0.061
0.10 1.66790 1.66775 0.009 1.66691 0.059
0.14 1.68975 1.68960 0.009 1.68875 0.059
0.18 1.70245 1.70230 0.009 1.70145 0.059
0.22 1.70998 1.70984 0.008 1.70899 0.058
0.26 1.71447 1.71434 0.008 1.71349 0.057
0.30 1.71715 1.71702 0.007 1.71618 0.057

4 Comparison with Solution by Kierkus et al. [9]

Kierkus et al. [9] derived a solution for the same problem as in the present article
except that the boundary condition in Eq. 3 is replaced by

T |r→∞ = 0 (20)

In terms of the present notation, their solution for the volume-averaged wire temper-
ature can be written as

Tw(av) (t)

= 4q

L2π2λ

∞∑
n=1

1

m2
n

∞∫
0

(
1 − e−(

u2+m2
nr2

0

)
at/r2

0

)
(Y0 (u) φ (u)− J0 (u) ψ (u))(

u2 + m2
nr2

0

) (
φ2 (u)+ ψ2 (u)

) udu

(21)
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where

ϕ (u) = 2u J1 (u)+ λw

λ

(
m2

nr2
0 − a

aw

(
m2

nr2
0 + u2

))
J0 (u) (22)

ψ (u) = 2uY1 (u)+ λw

λ

(
m2

nr2
0 − a

aw

(
m2

nr2
0 + u2

))
Y0 (u) (23)

Note that we have corrected some typographical errors in the result from Ref. [9] and
unlike Ref. [9], in the present article L is half of the wire length.

The dashed line in Fig. 2 shows the result of applying Eq. 21 to the case of hydrogen
gas at atmospheric pressure. For the boundary condition given in Eq. 20 we should
expect the solution by Kierkus et al. [9] to agree with the finite-radius solution at small
values of time but then become larger as the effect of the boundary condition at the
cell wall becomes important. However, contrary to expectations, the dashed line in
Fig. 2 is lower than the finite-domain solutions for values of time less than about 0.2 s.
In order to find the reason for this discrepancy, we re-derived the solution of Kierkus
et al. and it appears that for reasons of simplicity they may not have included all terms
from the inverse Laplace transform. For large values of t , a slightly better (although
still not exact) solution is given by

Tw(av) (t) = Twss(av)

− 4q

L2π2λ

∞∑
n=1

1

m2
n

∞∫
0

(Y0 (u) φ (u)− J0 (u) ψ (u)) e−(
u2+m2

nr2
0

)
at/r2

0(
u2 + m2

nr2
0

) (
φ2 (u)+ ψ2 (u)

) udu

(24)

where the steady-state part of the solution is

Twss(av) = 2q

πr2
0 L2λ

∞∑
n=1

1

m3
n

K0 (mnr0)
λw
λ

mn K0 (mnr0)+ 2
r0

K1 (mnr0)
(25)

Equation 24 is also plotted in Fig. 2 as a dashed-dotted line. Consistent with expec-
tations, Eq. 24 is in good agreement with the present analytical solution until time
becomes large enough for the cell wall at r = R to have an influence. Note that Eq. 21
may be deduced from Eq. 24 if we assume that Eq. 24 is exact at t = 0. However, in
deriving Eq. 24, we have neglected a term somewhat analogous to the term ζn(φn) in
Eq. 12 that may become important for very small values of t .

5 Convergence of Analytical Solution

Equations 8, 9, and 12 all contain summations to infinity. Therefore, it is useful to
confirm that enough terms have been used to obtain an accurate result. In order to do
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Fig. 3 Convergence of Eq. 9 with respect to the number of terms in Eq. 12
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Fig. 4 Convergence of solution with respect to number of eigenvalues: (a) error in volume-averaged wire
temperature and (b) steady-state temperature distribution along wire

this, we will consider the worst case, t = 0 and some other cases for small t . For the
case t = 0, convergence of Eq. 12 will be the slowest since the exponential factor takes
on a constant value of unity instead of reducing in size with larger values of j or n.
Also, for t = 0 the solution is known exactly since it is specified as zero in Eq. 7.
Figure 3 shows the error in evaluating Eq. 9 with different numbers of roots α j,n j = 1,
jmax. From Fig. 3 it may be observed that even for the slowest converging case, t = 0,
the error becomes less than 1 mK by about 50 terms. For practical problems where
t > 0.001 s, as few as 20 terms may be sufficient.

For the examples shown in Fig. 3, the summation over the eigenvalues n = 1 to
nmax in Eq. 9 was restricted to nmax = 200. Figure 4 shows the effect of changing
nmax. To calculate the error for Fig. 4a, the ‘exact’ temperature rise was taken to be
the calculated temperature corresponding to 1000 eigenvalues. Figure 4a shows the
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Table 3 Volume-averaged wire temperature rise—effect of ∂Tw/∂r

Time (s) 0.02 0.06 0.10 0.14
Temperature (K) with ∂Tw/∂r 1.51515 1.62691 1.66775 1.68960
Temperature (K) without ∂Tw/∂r 1.51503 1.62678 1.66762 1.68946

case for the steady-state and for t = 0.001 s. The temperature errors in both cases are
almost indistinguishable. This indicates that convergence with respect to the number of
eigenvalues is dominated by the steady-state component of the solution (i.e., Eq. 11).
Figure 4b shows the calculated temperature distribution along the wire. Quite clearly,
using only 10 or 20 eigenfunctions is insufficient to resolve the shape of the tempera-
ture distribution. Supposing the experimental error is of the order of millikelvins, then
according to Fig. 4a, for a numerical error two orders of magnitude smaller, about
150 eigenvalues should be sufficient. It is worth mentioning here that using more than
about 220 eigenvalues that requires quadruple precision to evaluate I0(mn R) in Eq. 11
since the modified Bessel functions of the first kind increase exponentially.

6 Influence of Radial Temperature Gradient in Wire

The present analytical solution would be much more complicated if it were necessary
to include the radial temperature gradient in the wire. Therefore, to justify this assump-
tion, we have carried out finite-volume numerical simulations with and without the
temperature gradient in the wire. The case considered is the same as that specified in
Sect. 3, Table 1. The results for a few selected points in time are shown in Table 3.
For this particular example, the difference in the temperature rise due to neglecting
the radial temperature gradient in the wire is of the order of 0.1 mK. Since (based on
Table 2) the accuracy of the numerical solution is of the same order, a little is achieved
by including the radial temperature gradient in the wire in the numerical solution.
Notice also in Table 3, that as should be expected, neglecting the radial temperature
gradient makes the wire slightly cooler than reality. Of course, the radial temperature
gradient in the wire will become more important if the thermal conductivity of the
wire is lower.

7 Effect of ζn(φn) in Eq. 12

As mentioned in Sect. 2.3 above, if the thermal diffusivity of the sample fluid is greater
than the thermal diffusivity of the wire, then an extra term, ζn(φn), appears in the tran-
sient part of the solution (Eq. 12). For a platinum wire, this is only likely to occur in
gases at pressures less than about 1 MPa. Since the additional term makes the solution
much more complicated, it is worthwhile to test its significance. By inspection of
Eq. 16, we can see that ζn(φn) will become less important as t increases. This is con-
firmed in Fig. 5. Figure 5 shows the calculated temperature rise for the case considered
in Sect. 3 with and without ζn(φn).
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Hydrogen gas
λ = 0.185 W⋅m-1⋅K-1

a = 1.57×10-4 m2⋅s-1

q = 0.295 W⋅m-1

L = 10 mm
R = 10 mm
10 µm diam Pt wire
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Fig. 5 Effect of neglecting ζn(φn) in Eq. 12

At time zero, the full solution for the case in Fig. 5 is very close to the initial condi-
tion, T = 0 as is also indicated in Fig. 3. If ζn(φn) is neglected, however, at t = 0 the
temperature rise has a value of 0.01339 K. At t = 0.01 s the difference between the
solution including ζn(φn) and the full solution is only 1.5 × 10−7 K. Therefore, for
practical purposes, the term ζn(φn) may be neglected without loss of accuracy. Note
that the present example of hydrogen at atmospheric pressure is an extreme case. For
lower diffusivity fluids, ζn(φn) should be even smaller.

8 Conclusions

The following can be concluded from the present study.

1. The derived analytical solution is a useful tool for validating numerical codes used
for the transient short-hot-wire method for measuring thermal conductivity.

2. Bench-mark quality calculated data for a sample high-diffusivity gas case of prac-
tical value is given in Table 2.

3. From 100 to 200 eigenvalues should be used in evaluating the summations in Eqs.
8 and 9.

4. The number of terms required for the transient summation, Eq. 12, varies depend-
ing on the value of t . For t > 0.01 s, fewer than 20 terms should be enough.

5. The term ζn(φn) in Eq. 12 may be neglected for most practical purposes connected
with the transient short-hot-wire method.

6. Little accuracy is lost by neglecting the radial temperature gradient in the wire.

Acknowledgments This research has been conducted as a part of the “Fundamental Research Project
on Advanced Hydrogen Science” funded by the New Energy and Industrial Technology Development
Organization (NEDO).
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Appendix A

Derivation of Analytical Solution

Taking Laplace transforms of Eq. 1–6 gives

s

aw
T w = ∂2T w

∂z2 + Q

sλw
+ 2λ

r0λw

∂T

∂r
|r=r0 (A1)

s

a
T = ∂2T

∂z2 + 1

r

∂

∂r

(
r
∂T

∂r

)
(A2)

T |r=R = 0 (A3)

T w = T |r=r0 (A4)

T w|z=0 = T |z=0 = 0 (A5)

∂T

∂z
|z=L = ∂T w

∂z
|z=L = 0 (A6)

Next we make use of the following finite Fourier transform (e.g., Ref. [16]);

f (mn) ≡
√

2

L

L∫
0

sin (mnz) f̄ (z) dz mn = 2n − 1

L

π

2
n = 1, 2, . . . (A7)

The inverse Fourier transform is given by

f̄ (z) =
√

2

L

∞∑
n=1

sin (mnz) f (mn) (A8)

Equation A7 is appropriate for satisfying the boundary conditions A5 and A6. Apply-
ing Eq. A7 to Eq. A1 through A4, and making use of Eqs. A5 and A6, gives

s

aw
Tw = −m2

nTw +
√

2

L

Q

mnλws
+ 2λ

r0λw

dT

dr
|r=0 (A9)

s

a
T = −m2

nT + 1

r

d

dr

(
r

dT

dr

)
(A10)
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T |r=R = 0 (A11)

Tw = T |r=r0 (A12)

In order to simplify the notation, let θ = T where θ is the Fourier transform of T
and θ is the Laplace transform of θ . Substituting Eq. A12 into Eq. A9 and rearranging
Eqs. A10 and A11 gives

(
s

aw
+ m2

n

)
θ |r=r0 =

√
2

L

Q

mnλws
+ 2λ

r0λw

dθ

dr
|r=r0 (A13)

( s

a
+ m2

n

)
θ = 1

r

d

dr

(
r

dθ

dr

)
(A14)

θ |r=R = 0 (A15)

Equation A14 is an ordinary differential equation with boundary conditions expressed
by Eqs. A13 and A15. Since Eq. A14 can be rewritten in the form of a modified Bessel
equation of order zero by substituting x = (((s/a) + (mn)

2)1/2r), the general solu-
tion is given by Eq. A16, where the constants A and B need to be determined using
Eqs. A13 and A15:

θ = AI0

(( s

a
+ m2

n

)1/2
r

)
+ BK0

(( s

a
+ m2

n

)1/2
r

)
(A16)

Solving for A and B gives

θ = bn

s�

(
K0

(( s

a
+ m2

n

)1/2
R

)
I0

(( s

a
+ m2

n

)1/2
r

)

− I0

(( s

a
+ m2

n

)1/2
R

)
K0

(( s

a
+ m2

n

)1/2
r

))
(A17)

where

� = K0

(( s

a
+ m2

n

)1/2
R

)((
s

aw
+ m2

n

)
I0

(( s

a
+ m2

n

)1/2
r0

)

− β
( s

a
+ m2

n

)1/2
I1

(( s

a
+ m2

n

)1/2
r0

))

− I0

(( s

a
+ m2

n

)1/2
R

) ((
s

aw
+ m2

n

)
K0

(( s

a
+ m2

n

)1/2
r0

)

+ β
( s

a
+ m2

n

)1/2
K1

(( s

a
+ m2

n

)1/2
r0

))
(A18)
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and

β = 2λ

r0λw
bn =

√
2

L

Q

mnλw

In order to find the inverse Laplace transform of Eq. A17, we make use of the inversion
formula. For the special case where there is no branch and the integrand tends to zero
at infinity (to the left of c on the complex plane), the inverse Laplace transform is
given by the sum of the residues as in Eq. A19. Both of these conditions are usually
satisfied for heat conduction problems in finite domains;

θ = 1

2π i

c+i∞∫
c−i∞

estθds =
∑

residues (A19)

In Eq. A19, c is a positive real constant large enough so that all singularities are to the
left of c. Thus, we need to find the singularities in Eq. A17. Poles appear at s = 0 and
for any values of s that make � = 0.

The residue for s = 0 is given by

res|s=0 = bn (K0 (mn R) I0 (mnr)− I0 (mn R) K0 (mnr)) /
(
K0 (mn R)

(
m2

n I0 (mnr0)

−βmn I1 (mnr0))− I0 (mn R)
(

m2
n K0 (mnr0)+ βmn K1 (mnr0)

))
(A20)

In order to find the values of s that make Eq. A18 zero, it is useful to make the
following substitution:

s

a
+ m2

n = −α2
n

This gives

� = K0 (iαn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
I0 (iαnr0)− βiαn I1 (iαnr0)

)

− I0 (iαn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
K0 (iαnr0)+ βiαn K1 (iαnr0)

)

(A21)

In order to simplify Eq. A21, we make use of the following identities (e.g., Ref. [12],
Appendix III).

I0 (i x) = J0 (x) I1 (i x) = i J1 (x) K0 (i x) = (π i/2) (−J0 (x)+ iY0 (x))

K1 (i x) = (π/2) (−J1 (x)+ iY1 (x))
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This gives

� = π

2
J0 (αn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
Y0 (αnr0)+ βαnY1 (αnr0)

)

−π
2

Y0 (αn R)

((
−a

(
α2

n + m2
n

)
aw

+ m2
n

)
J0 (αnr0)+ βαn J1 (αnr0)

)
(A22)

Equation A22 is an even function with respect to real αn . It is cyclic and has roots
along the real axis. For the j th positive real root (α j,n), the residue is given by

res
(

s = −a
(
α2

j,n + m2
n

))
= bne

−a
(
α2

j,n+m2
n

)
t

−a
(
α2

j,n + m2
n

)
d�
ds

|
s=−a

(
α2

j,n+m2
n

)�
(
α j,n

)
(A23)

where

�
(
α j,n

) = (
K0

(
iα j,n R

)
I0

(
iα j,nr

) − I0
(
iα j,n R

)
K0

(
iα j,nr

))
= (π/2)

(
J0

(
α j,n R

)
Y0

(
α j,nr

) − Y0
(
α j,n R

)
J0

(
α j,nr

))
(A24)

Differentiating Eq. A22 with respect to s gives

d�

ds
= −π

4aαn
{−R J1 (αn R) [AnY0 (αnr0)+ βαnY1 (αnr0)]

+ J0 (αn R) [(βαnr0 − 2αn (a/aw)) Y0 (αnr0)− Anr0Y1 (αnr0)]

+ RY1 (αn R) [An J0 (αnr0)+ βαn J1 (αnr0)]

− Y0 (αn R) [(βαnr0 − 2αn (a/aw)) J0 (αnr0)− Anr0 J1 (αnr0)]} (A25)

where

An = −a
(
α2

n + m2
n

)
aw

+ m2
n

Most or all of the roots of Eq. A22 (with � = 0) fall on the real axis, and thus
Eqs. A23 and A24 are convenient for evaluating the residues. However, for certain
circumstances two roots (αn = ±iφn) also appear on the imaginary axis for Eq. A22
(corresponding to a single pole on the negative real axis for s in Eq. A17). If these
roots are recovered, then, in principle, Eq. A23 can also be used to evaluate the residue.
However, since it is more convenient to avoid the use of complex numbers in the final
evaluation, it is better to make the following substitution in Eq. A18:

s

a
+ m2

n = φ2
n (A26)
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Therefore, we have

� = K0 (φn R)

((
a

(
φ2

n − m2
n

)
aw

+ m2
n

)
I0 (φnr0)− βφn I1 (φnr0)

)

−I0 (φn R)

((
a

(
φ2

n − m2
n

)
aw

+ m2
n

)
K0 (φnr0)+ βφn K1 (φnr0)

)

(A27)

The residue for the pole corresponding to the value of φn that makes Eq. A27 zero is
given by

res
(

s = a
(
φ2

n − m2
n

))
= be−a

(
m2

n−φ2
n
)
t

a
(
φ2

n − m2
n

) d�
ds

|s=a(φ2
n−m2

n)

(K0 (φn R) I0 (φnr)

−I0 (φn R) K0 (φnr)) (A28)

The derivative of Eq. (A27) with respect to s is given by

d�

ds
= 1

2φna
[(K0 (φn R) I0 (φnr0)− I0 (φn R) K0 (φnr0)) (2 (a/aw)− βr0) φn

+ (r0 K0 (φn R) I1 (φnr0)− RK1 (φn R) I0 (φnr0)) Bn

+ (r0 I0 (φn R) K1 (φnr0)− RI1 (φn R) K0 (φnr0)) Bn

+ (K1 (φn R) I1 (φnr0)− I1 (φn R) K1 (φnr0)) βφn R] (A29)

where

Bn = m2
n +

(
φ2

n − m2
n

)
a

aw

The derivation is almost complete. In order to obtain the final result given in Eq. 8, the
residues specified by Eqs. A20, A23, and A28 are summed over all j for each value
of n. Finally, the inverse finite Fourier transform specified in Eq. A8 is applied. Note
that in Eq. 8, θn includes only the transient parts of the solution (for clarity), while in
this appendix it includes both transient and steady parts.

Appendix B

Conditions for Which Eq. 17 has Real Roots

The term ζn(φn) in Eq. 12 only appears if Eq. 17 has real roots. Therefore, it is nec-
essary to clarify the conditions at which this occurs. We wish to verify the following
conditions already noted in Eqs. 15 and 16.

1. Equation 17 does not have a positive real root if aw > a
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2. Equation 17 has a positive real root if and only if m2
n > β/ {((a/aw)− 1) r0

ln (R/r0)}
Note that since Eq. 17 can be derived by substituting αn = i φn in Eq. 13, where φn

is a real number, then the existence of real roots for Eq. 17 also implies the existence
of complex roots (on the imaginary axis) in Eq. 13. Let W (φn) denote the expression
on the left-hand side of Eq. 17. Therefore, we may write

W (φn) = (I0 (φn R) K0 (φnr0)− K0 (φn R) I0 (φnr0))
((
φ2

n − m2
n

)
(a/aw)+ m2

n

)
+ (I0 (φn R) K1 (φnr0)+ K0 (φn R) I1 (φnr0)) βφn = 0 (B1)

For real φn , W (φn) is an even function. This may be verified by substituting −φn for
φn and making use of the following identities:

I0 (−x) = I0 (x) , I1 (−x) = −I1 (x) , K0 (−x) = −π i I0 (x)+ K0 (x)

K1 (−x) = −π i I1 (x)− K1 (x)

Therefore, if φn is a positive real root of Eq. 17, then −φn is also a root. Since based
on Eq. A25 we are only interested in φ2

n , it is sufficient to consider only the positive
root.

The modified Bessel functions, I0(x), K0(x), I1(x), and K1(x), are positive for
all positive real values of x . Therefore, the term (I0 (φn R) K1 (φnr0) + K0 (φn R) I1
(φnr0))βφn in Eq. B1 is positive for positive φn since r and R are also positive real
numbers. Note also that for R > r0 the following inequalities are also true since I0(x)
increases monotonically with increasing x and K0(x) decreases monotonically with
increasing x :

I0 (φn R) > I0 (φnr)

K0 (φn R) < K0 (φnr)

Therefore,

I0 (φn R) K0 (φnr) > K0 (φn R) I0 (φnr)

Thus, the factor (I0 (φn R) K0 (φnr0)− K0 (φn R) I0 (φnr0)) in Eq. B1 is also positive.
Therefore, the only way that W (φn) can be zero is if

(
φ2

n − m2
n

)
(a/aw)+ m2

n < 0 (B2)
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Rearranging Eq. B2, we obtain

φ2
n < m2

n

(
1 − aw

a

)
(B3)

Therefore, since m2
n is a positive number and Eq. B3 cannot be satisfied if the right-

hand side is negative, no positive real root to Eq. 17 can exist if the thermal diffusivity
of the wire, aw is greater than the thermal diffusivity of the gas, a. Thus, statement 1
at the beginning of this appendix is verified. Also, Eq. 19 follows from Eq. B3.

In order to verify statement 2, first we rewrite Eq. B1 in the following form:

W (φn) = W1 (φn)W2 (φn)+ βW3 (φn) (B4)

where

W1 (φn) = (I0 (φn R) K0 (φnr0)− K0 (φn R) I0 (φnr0)) (B5)

W2 (φn) =
((
φ2

n − m2
n

)
(a/aw)+ m2

n

)
(B6)

W3 (φn) = (I0 (φn R) K1 (φnr0)+ K0 (φn R) I1 (φnr0)) φn (B7)

It is possible to verify that Eqs. B5–B7 increase monotonically with increasing pos-
itive real values of φn for R > r0. Therefore, the function W (φn) given in Eq. B4
also increases monotonically for increasing positive φn . This property of the function
W(φn) implies that there can be only one positive real root to Eq. B1. Since for large
values of φn , W (φn) is positive; if the root exists, then the following inequality must
be true:

lim
φn→0

W (φn) < 0 (B8)

Making use of the expansions in Ref. [15] it can be shown that

lim
φn→0

W (φn) = m2
n (1 − (a/aw)) ln (R/r0)+ (β/r0) (B9)

Substituting Eq. B9 into B8 and rearranging gives

m2
n >

β

((a/aw)− 1) r0 ln (R/r0)
(B10)

Thus, Eq. B10 is the necessary condition for the existence of a real positive root to
Eq. 17.
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